
www.manaraa.com

To appear in the IEEE Transactions on Knowledge and Data Engineering

Special Issue on Multimedia Information Systems, August 1993

Efficient Storage Techniques for Digital Continuous
Multimedia

P. Venkat Rangan & Harrick M. Vin

Multimedia Laboratory
Department of Computer Science and Engineering

University of California at San Diego
La Jolla, CA 92093-0114

E-mail: venkat@cs.ucsd.edu, Phone: (619) 534-5419, Fax: (619) 534-7029

Abstract

Advances in storage and networking have led to the development of multimedia computing systems capable
of offering services such as multimedia mail, news distribution, advertisement, and entertainment. Supporting
such services requires the integration of storage and transmission of multimedia data with computing. In this
paper, we address the problem of collocational storage of media strands, which are sequences of continuously
recorded audio samples or video frames, on disk. We present a model that relates disk and device characteristics
to the playback rates of media strands, and derives storage patterns so as to guarantee continuous retrieval of
media strands. To efficiently utilize the disk space, we develop mechanisms for merging storage patterns of
multiple media strands, by filling the gaps between media blocks of one strand with media blocks of other strands.
We propose both an on-line algorithm suitable for merging a new media strand into a set of already stored strands,
and an off-line merging algorithm that can be applied a priori to the storage of a set of media strands before any
of them have been stored on disk. As a consequence of merging, storage patterns of media strands may become
perturbed slightly, to compensate which, read-ahead and buffering are required so that continuity of retrieval
remains satisfied. We present techniques for minimizing both read-ahead and buffering. These techniques are
being implemented in the multimedia storage server being developed at the UCSD Multimedia Laboratory.

Index terms: Digital video and audio storage, continuous retrieval, merging techniques, read ahead, buffering

i

www.manaraa.com

1

1 Introduction

Future advances in networking will make it feasible for digital computer networks to support video trans-

mission [3, 12]. Coupled with the rapid advances in storage technologies, they can be used to build services such

as multimedia mail, news distribution, advertisement, and entertainment over metropolitan-area networks such as

B-ISDN [2, 11]. Supporting such services requires the integration of storage and transmission of multimedia data

with computing. Whereas transmission of digital multimedia data will have to wait a few more years for ultra-high

bandwidth networks to become pervasive, the integration of multimedia storage with distributed computing merits

immediate attention.

Digital video and audio differ fundamentally from text in three important ways with regard to their storage

requirements:� Multiplicity of media streams: A multimedia object consists of several media components (such as audio

and video), which, generally, are separated at the input and arrive at the storage server as different streams.

Storing these media together may entail additional processing for combining them during storage, and for

separating them during retrieval. Storing them separately, on the other hand, requires that the storage server

maintain explicit temporal relationships among the media so as to ensure synchronous retrieval.� Continuity of recording and retrieval: Recording and playback of motion video and audio are continuous

operations. The storage server must organize multimedia data on disk so as to guarantee that their recording

and retrieval proceed at their respective real-time rates.� Large data size: Video and audio data have very large storage space requirements. If the storage system is

to act as a basis for supporting document editing, mail, distribution of news and entertainment, etc., it must

organize multimedia data on the disk so as to efficiently use the limited available space.

The design of a high-performance multimedia storage server that addresses the above requirements of real-

time digital video and audio is the subject matter of this paper. Specifically, we define a sequence of continuously

recorded audio samples or video frames as a Strand, and address the problem of collocational storage of multiple

media strands on disk. We present a model that relates disk and device characteristics to the playback rate of media

strands, and for each media strand, derive a storage pattern consisting of a media block size and an inter-block

gap size that can guarantee the strand’s continuous retrieval. To efficiently utilize the disk space, we develop

www.manaraa.com

2

mechanisms for merging storage patterns of multiple media strands by filling the gaps between media blocks of

one strand with media blocks of other strands, but without violating the continuity requirements of either of the

strands. We propose both an on-line algorithm suitable for merging a new media strand into a set of already stored

strands, and an off-line merging algorithm that can be applied a priori to a set of media strands before any of them

have been stored on disk. The off-line algorithm can operate with much smaller buffer sizes, and it does so by

using a staggered toggling technique in which sizes of successive media blocks are fine tuned individually so as

not to exceed the available buffer size. As a consequence of merging, the storage pattern, and hence the continuity

requirements, of media strands may not be maintained strictly for each media block. However, it is possible to

introduce read-ahead and buffering of a finite number of blocks so as to preserve the storage pattern and continuity

properties at least on an average over a finite number of blocks. We present techniques for determining the amount

of read-ahead and buffering required to guarantee continuous retrieval of merged media strands. The merging

algorithms and techniques presented in this paper form a basis for a prototype multimedia storage server being

implemented at the UCSD Multimedia Laboratory [11].

The rest of this paper is organized as follows: In Section 2, we present a model for deriving storage patterns

of individual strands, and then review previous work in this area. In Section 3, we develop the algorithms for

merging multiple strands. Techniques for determining read-ahead and buffering of merged media strands are

presented in Section 4. In Section 5, we describe our prototype multimedia server and present its preliminary

performance results, and finally, Section 6 concludes the paper.

2 A Framework for Efficient Storage of Digital Multimedia

Digitizationof video yields a sequence of frames, and that of audio yields a sequence of samples. We refer to a

sequence of continuously recorded video frames or audio samples as a Strand. A storage server must divide video

and audio strands into blocks while storing them on a disk. Most existing storage server architectures employ

random allocation of blocks on disk. Such storage servers cannot handle media strands because, separations

between blocks of a strand may not be constrained enough to guarantee bounds on access and latency times of

successive blocks of the strand. At the other end of the spectrum, contiguous allocation of blocks of a strand can

guarantee continuous access, but it is fraught with inherent problems of fragmentation and can entail enormous

copying overheads during insertions and deletions. Constrained block allocation, on the other hand, can keep the

access time within media playback requirements without entailing the above disadvantages.

www.manaraa.com

3

Symbol Explanation UnitM Media block size in the storage pattern of a strand sectorsG Gap size in the storage pattern of a strand sectorsB Buffer size needed during the retrieval of a strand bytesR Read ahead necessary for retrieval of a strand bytes� Rate of data transfer to or from disk sectors/sec� Display time of a media block sec

Table 1: Symbols used in this paper

There are two questions that need to be answered in constrained allocation of blocks of a media strand: (1)

What should the size of the blocks be? and (2) What should the separation between successive blocks of a strand

be? The guiding factor in determining the block size and the separation is the requirement of continuous retrieval

of media strands at their respective playback rates. Continuous retrieval of media strands can be guaranteed if the

time to skip over a gap and retrieve the next media block does not exceed the duration of its playback. Using the

symbols defined in Table 1, the condition for continuous retrieval can be formulated as:M +G� � � (1)
For each strand, the relative values of its media block size M and its separation between successive media

blocksGmust satisfy Equation (1), which we refer to as the continuity requirement. Since there are two parameters

and one equation, one of these parameters, namely the media block size, can be determined based on the hardware

environment and the amount of buffer space available at the display devices. Having fixed M , the upper bound

on G can be obtained by direct substitution in Equation (1). We refer to the pair (M;G) as the storage pattern of a

strand1. For example, if a HDTV quality video strand is digitized at 0.5 Mbits/frame and recorded at 60 frames/s

on a disk with data transfer rate of 25600 sectors/s (each sector equals 512 bytes, yielding a transfer rate of 100

Mbits/s), then choosing each media block to contain one video frame yields a storage pattern (M;G) to be (125,

425) sectors. A strand consists of repetitions of this pattern (see Figure 1).

Note that user interaction using functions such as fast-forwarding can be supported by satisfying continuity

requirements at the fastest required display rate (i.e., at the smallest value of �). However, when blocks are

1Clearly, any increase in the value ofM (which effectively increases the read-ahead) is also accompanied by a corresponding increase inG. In the extreme case, if M is chosen such that G exceeds the maximum seek and rotational latencies, then constrained allocation of media
blocks on disk degenerates to unconstrained allocation.

www.manaraa.com

4

M G M G M G M

M = 125 sectors G = 4000 sectors

Figure 1: Representation of media strands as repetitions of storage patterns

displayed slower than the fastest rate (e.g., in slow motion), continuity requirements become over-satisfied, and

retrieval of media blocks proceeds faster than their display, leading to accumulation of media blocks in buffers.

In order to prevent unbounded accumulation, the disk can switch to some other task after all the buffers allocated

to the retrieval of a media strand are filled, and switch back when sufficient buffers become empty [10].

Even though bounding the separation between successive media blocks so as not to exceed G ensures

continuous retrieval of media strands, the separation between successive media blocks (namely, G�) may, in

general, be significantly larger than the time to read a media block from disk (namely, M�). Hence, if a placement

policy is based solely onG, then only a small fraction of the time required to access a media block may be spent in

reading its contents from disk, thereby yielding low data transfer rates. In fact, if the separation between successive

media blocks is set to be exactly equal to (����M), then a multimedia storage server can retrieve only one strand

at a time. In order to support simultaneous retrieval of multiple strands, it is essential that media blocks be placed

on disk in a rotationally optimal manner. The rotationally optimal separation between media blocks depends on

the characteristics of the multimedia storage server (such as, the delay incurred in initiatinga new disk block access

after having completed a previous request), and defines a lower bound G0 on the separation between successive

media blocks on disk. If a multimedia storage server ensures that the separation between each pair of successive

media blocks is within [G0; G], then it is referred to as strict placement algorithm. On the contrary, an adaptive

placement algorithm may accommodate occasional violations of the bounds on the separation between successive

media blocks as long as the average separation over a finite window of blocks is within [G0; G]. Whereas strict

placement of a media strand on disk permits its playback to be initiated from an arbitrary block without any

read-ahead, an adaptive placement may require a read-ahead equal to the number of media blocks within an

averaging window. The adaptive placement algorithm, however, is much more flexible since it may succeed in

placing media blocks on disk even when the strict algorithm fails to do so. Both of these placement algorithms can

exploit varying playback durations of media blocks (yielded from storing variable number of compressed media

units in each media block) by dynamically computing the separation between successive media blocks, and then

appropriately adjusting the layout of media strands on disk.

www.manaraa.com

5

In practice, a multimedia storage server needs to store thousands of media strands on disk. If there are

sufficiently large empty regions on the disk, each strand may be stored exactly in accordance with its storage

pattern. However, storing each strand independently entails the unusability of all the gaps in its storage pattern,

resulting in an occupancy of MM+G , which, for the values of M and G computed earlier, is about 1
5 . In order

to utilize the disk space efficiently, blocks of a new strand may have to be stored in the gaps of already existing

strands on the disk. We refer to this process as merging. Depending on whether or not they preserve the individual

storage patterns of the media strands at the time of merging, merging policies can be classified into the following

two categories:� Storage Pattern Preserving (SPP) policies, which merge a set of media strands only if the storage patterns

of each of the strands can be strictly preserved even after being merged. That is, even after merging, each

media block of a merged strand must exactly equal M contiguous sectors, and the separation between every

two successive media blocks must exactly equal G contiguous sectors, thereby guaranteeing continuous

retrieval.� Storage Pattern Altering (SPA) policies, on the other hand, may distribute media blocks of a strand being

merged into the gaps of existing strands, even if that causes breaks in the storage pattern of the merged

strand.

The SPP merging policies have been studied by Yu et al. [13]. But, because of their strict insistence on

exactly preserving the storage pattern of each strand, the SPP merging policy turns out to be inflexible and space

inefficient for multiple heterogeneous media strands.

SPA merging policies, since they cause perturbations in the storage patterns of media strands,cannot guarantee

continuous retrieval of merged media strands. However, they maintain the relative ratio of the size of media blocks

and gaps for each merged strand to be MG , at least on an average over a finite length of the strand. Consequently, by

introducing read-ahead and buffering of a finite number of media blocks of each strand, so as to nullify the effects

of jitter due to perturbations in its storage pattern, continuous retrieval can be reinsured. In this paper, we develop

algorithms for SPA merging of multiple media strands, and obtain the read-ahead and buffering requirements

necessary for continuous retrieval.

In the recent past, multimedia storage systems have begun to receive much attention. However, most of

the past work is restricted to still images and/or audio [1, 5, 8]. Work by Rangan and Swinehart [9] supports

www.manaraa.com

6

video filing, but video is stored in an analog form on consumer electronic devices. The Matsushita’s Real Time

Storage System [7] has investigated some of the low level storage mechanisms for digital video. Gammell and

Christodoulakis[4] have described file system designs for supportingmultipleplayback channels of delay sensitive

data. However, their scheme assumes contiguous storage of media strands on disk. Whereas contiguous storage

of media strands ensures efficient retrieval of individual strands, retrieval of a multimedia object (consisting of

several media components - such as, audio and video), stored on disk as several different contiguous strands,

may incur significant seek and rotational latencies due to switching between strands. In order to alleviate this

shortcoming, a model for the design of a file system for digital video and audio based on constrained block

allocation was first proposed by Rangan and Vin in [10]. In the next few sections, we significantly extend that

model by developing mechanisms for merging the storage of multiple synchronous strands, thereby minimizing

the overhead due to seek and the rotational latencies incurred during their concurrent retrieval.

3 Merging Techniques

Media strands may arrive for storage at a storage server either in an isolated fashion, one at a time, each

belonging to a different multimedia object, or simultaneously, many of them at the same time, which will in fact

be the case if all of them belong to the same multimedia object. In the former case, a newly arriving media strand

should be merged into strands that already exist on the disk, whose laid out storage patterns cannot be changed, and

is termed: On-line Merging. In the latter case, called off-line merging, the strand patterns of the simultaneously

arriving multiple media strands can be mutually adjusted prior to merging, so as to minimize read-ahead and

buffering requirements for continuous retrieval after their merged placement on disk. In the next two subsections,

we develop algorithms for on-line and off-line merging, respectively.

3.1 On-line Merging

Consider two media strands S1 and S2 with storage patterns (M1; G1) and (M2; G2), respectively. Let the

blocks of strand S1 be laid out on the disk in accordance with its storage pattern, thereby guaranteeing continuous

retrieval of S1. To efficiently utilize the storage space, the file system must store the blocks of S2 in the gaps of

the pattern for S1. The constraint in this process of merging is that the continuity requirement of S2 must not be

violated.

Merging of S2 into S1 is straight-forward if G1 = M2 and M1 = G2. In such a case, each media block

of S2 will exactly fit into a gap of S1. However, in general, this can be very restrictive. We will now derive

www.manaraa.com

7

the conditions for deciding whether the storage of two media strands can be merged together. Throughout this

analysis, we will assume that the lengths of media strands may not be bounded at the time of the start of its

recording, but that the read-ahead and the buffer sizes are required to be bounded.

Intuitively, a set of strands S1; S2; :::; Sn can be merged together if the sum of the fractions of space occupied

by media blocks of S1; S2; :::; Sn does not exceed 1:M1M1 +G1
+ M2M2 + G2

+ � � �+ MnMn +Gn � 1 (2)
We analyze this condition first for two strands, and then extend the analysis to multiple strands.

3.1.1 Binary On-line Merging

If we simplify Equation (2) for two strands, we obtain:M1M1 + G1
+ M2M2 +G2

� 1) M1M1 +G1
� 1 � M2M2 + G2

= G2M2 +G2) G1 �G2 �M1 �M2

The following proposition formally shows that the above condition is both necessary and sufficient for merging

of two strands:

Proposition 1 (Merge Condition) Let S1 and S2 be two strands with associated storage patterns (M1; G1) and(M2; G2), respectively. We can merge strand S2 into strand S1 if and only if,G1 �G2 �M1 �M2 (3)
Proof: In order to merge strand S2 into strand S1, the media blocks in S2’s pattern over a finite length L must be

accommodated in the gaps of S1’s pattern of the same length. This is because, since the storage pattern ofS2 has been determined from continuity requirements, it is guaranteed that the time to display all of S2’s

media blocks over any finite length L is sufficient to scan and transfer L sectors from the disk. Thus, after

merger, by reading ahead and buffering S2’s media blocks contained within a chunk of length L of S1’s

pattern, S2’s continuity of display is guaranteed to be satisfied.

www.manaraa.com

8

We will first show that, if Equation (3) is satisfied, then, over a length L equal to the lowest common

multiple of the patterns of strands S1 and S2, all the media blocks of S2 can be accommodated within the

gaps of S1, and hence S2 can be merged into S1. Let L = LCM(M1 +G1;M2 +G2) be the lowest common

multiple of the patterns of S1 and S2, from which we can obtain k1 and k2 such that k1 � (M1 +G1) = L andk2 � (M2 + G2) = L (see Figures 2(a) and 2(b)). That is, L is the number of sectors in which k1 instances

of S1’s pattern or k2 instances of S2’s pattern fit. Given that,G1 �G2 �M1 �M2

we obtain: , G1 �G2 +G1 �M2 �M1 �M2 + G1 �M2, G1 � (G2 +M2) �M2 � (M1 + G1), G1 � k1 � k2 � (G2 +M2) �M2 � k1 � k2 � (M1 +G1), G1 � k1 � L �M2 � k2 � L, G1 � k1 �M2 � k2 (4)
Thus, k2 media blocks of strand S2 fit in k1 gaps of strand S1, thereby showing that length L of S2 can be

accommodated in the same length of S1.

On the other hand, suppose that it is possible to merge strand S2 into strand S1, that is (as explained at the

beginning of this proof), there exists a finite length L such that a segment of lengthL of strand S2 fits within

a segment of the same length of strand S1. We will now show that Equation (3) must hold.

Let us suppose that, k1 patterns of S1 or k2 patterns of S2 span a length L:k1 � (M1 +G1) = L (5)k2 � (M2 +G2) = L (6)
Since length L of S2 fits into the same length of S1, k2 media blocks of S2 must fit in k1 gaps of S1:k2 �M2 � k1 �G1

Substituting for k1 and k2 from Equations (5) and (6) respectively, and simplifying yields that:G1 �G2 �M1 �M2

www.manaraa.com

9

which is nothing but Equation (3).2
If the merge condition is satisfied, the simplest way to lay out S2’s media blocks is to fill them into S1’s

gaps continuously starting from the very first gap. After storing S2’s media blocks in a chunk of length L of S2’s

pattern in the first few gaps of a chunk of the same length L of S1’s pattern, the remaining gaps in that chunk of

lengthL of S1’s pattern would be left free. In this layout policy, which we term as greedy, if S2’s pattern is sparse

compared to the empty space available in S1, a large number of media blocks of S2 are read earlier than their time

of display, leading to peaks in buffering requirements (see Figure 2(c)).

The buffering requirements can be reduced by distributing the media blocks of S2 uniformly over all the gaps

of S1 , so as to guarantee that the separation between every pair of consecutive media blocks of S2 is almost the

same (see Figure 2(d)). Formally, if k1 patterns of strand S1 and k2 patterns of strand S2 span over a merge cycle

of length L, then we define the pseudo block size of S2 with respect to S1 as the smallest integer M 0
2 such thatk2 �M 0

2 � k1 �G1 (7)
Since the storage patterns of S1 and S2 satisfy the merge condition, we know that k2 �M2 � k1 � G1, yielding

that M 0
2 �M2. If M 0

2 = M2, then the merge condition is exactly satisfied, and the media blocks of S2 occupy all

the gaps of S1. If M 0
2 > M2, then in each merge cycle, we can distribute the k2 blocks of S2 such that there are

either M 0
2 �M2 � 1 or M 0

2 �M2 free sectors between consecutive media blocks of S2. (To be precise, in each

merge cycle, k2 �M 0
2 � k1 � G1 blocks will have a separation of M 0

2 �M2 � 1 sectors, and the remaining will

have a separation of M 0
2 �M2 sectors). The (k2 + 1)th block of S2 will be stored exactly L sectors away from the

first media block of S2, resulting in a pattern of filled and free sectors that repeats after every L sectors, which is

the length of one merge cycle (see Figure 2). Such a distribution is almost uniform in the sense that the number

of free sectors between successive blocks of S2 can differ only by one.

3.1.2 On-line Merging of More than Two Strands

The above binary merging techniques can be easily extended to the storage of three or more strands. Let us

suppose that we have to merge n strands, S1, S2, S3, ..., Sn. When the first two strands S1 and S2 are merged, the

resulting storage pattern can be viewed as that of a composite strand S1;2, whose media block size M1;2 and gap

www.manaraa.com

10

M2 = 4 G2 = 8

G1 = 6M1=2

1,2

1,2

S

S
1,2

1,2

(a)

(b)

(c)

(d)

S

S

S = merge (S , S) using Greedy Placement Strategy

S = merge (S , S) using Uniform Placement Strategy

1

2

1 2

1 2

Merge Cycle L = LCM (M1+G1, M2+G2) = 24

k1 = 3 k2 = 2

Figure 2: On-line merging of strand S2 into S1

size G1;2 are given by: M1;2 = k1 �M1 + k2 �M2G1;2 = L1;2 �M1;2
where L1;2 = LCM(M1 +G1;M2 +G2) is the length of the pattern, k1 = L1;2M1+G1

, and k2 = L1;2M2+G2
. The merger

of S3 with S1;2 can now be carried out using the binary merging techniques to yield strand S1;2;3. Continuing the

merge operation in this fashion, the n strands can be merged using a sequence of n� 1 binary merge operations,

resulting in a final composite strand, S1;2;3;:::n
Deletion of a strand Si from a composite strand S1;2;:::;n releases the sectors occupied by the media blocks

of strand Si to the pool of gaps of the composite strand S1;2;:::;n. Let (Mi; Gi) and (M1;2;:::;n; G1;2;:::;n) denote

the storage patterns of strands Si and S1;2;:::;n, respectively, and that ki patterns of strand Si exist in each pattern

of S1;2;:::;n. Then, deleting Si from S1;2;:::;n yields a strand S01;2;:::;n with storage pattern (M 0i ; G0i), whereM 0
1;2;:::;n = M1;2;:::;n � ki �Mi and G0

1;2;:::;n = G1;2;:::;n + ki �Mi. Consequently, the length of the storage

pattern of the composite strand, namely (M 0
1;2;:::;n + G0

1;2;:::;n), remains the same. If, however, the strand to be

deleted represents the last one to be merged, then deletion restores the pattern to that before the last merge, thereby

www.manaraa.com

11

decreasing the pattern length of the composite strand. For example, if strand Sn is deleted from a composite

strand S1;2;:::;n, the parameters L1;2;:::;n, G1;2;:::;n, and M1;2;:::;n are restored back to L1;2;:::;n�1, G1;2;:::;n�1, andM1;2;:::;n�1, respectively, which are the values prior to the merging of strand Sn into S1;2;:::n�1.

Notice that, as more and more strands are merged together, gaps become more and more scarce. Hence,

larger merge cycle lengths (L) are necessary for storing the media blocks of newer strands, leading to increases in

buffer space requirements. On the contrary, if none of the strands that need to be stored by a multimedia storage

server have been physically placed on the disk, the patterns of each of the strands can be determined so as to be

exactly mergeable, thereby eliminating pattern deviations for any of the strands when they are stored in a merged

form, and consequently reducing the buffer space requirements. Such an off-line merging technique, suitable for

the placement of media strands on write-once optical disks (such as, WORMs and CLVs), is elaborated next.

3.2 Off-line Merging

Suppose that media strands S1; S2; :::; Sn with storage patterns (M1; G1), (M2; G2), ..., (Mn; Gn), respec-

tively, are to be stored in a merged form on the disk. In off-line merging, suppose that we place the strands on

disk such that chunks of k1 blocks of S1, k2 blocks of S2 , ..., kn blocks of Sn follow each other, and the sequence

repeats indefinitely (see Figure 3).

Merge Cycle

k1 = 2 k2 = 4 k3 = 3 k4 = 6 k5 = 9

Figure 3: Off-line merging

Guaranteeing retrieval at its playback rate for each strand Si requires that the space occupied by blocks of

all other strands Sj (j 6= i) (between two successive chunks of blocks of Si) does not exceed the total gap space

permitted for the ki blocks (present in each chunk) of Si. That is,8 strands Si; i 2 [1; n] :
Xj2[1;n];j 6=ikj �Mj � ki �Gi (8)

The values of k1; k2; :::; kn satisfying the above system of n equations define a merge cycle. As a solution to the

above system of equations, we now propose a scaled placement policy, in which the number of consecutive blocks

of strands placed in a merge cycle are inversely related to their pattern length.

www.manaraa.com

12

3.2.1 Scaled Placement Policy for Off-line Merging

In the scaled placement policy, the number of consecutive blocks ki of a strand Si placed in a merge cycle is

inversely scaled by its pattern length (i.e., Mi +Gi). That is, 8i 2 [1; n]:ki = kMi +Gi (9)
where, k is a constant. The following theorem proves that the scaled placement policy will always yield a solution

if one exists, thereby showing that it is complete in its effectiveness.

Theorem 1 Whenever the merge condition (Equation (2)) is satisfied, the scaled placement policy always yields

a merge cycle.

Proof: In the scaled placement policy, the number of consecutive blocks ki in a chunk of a strand Si placed in

a merge cycle is given by ki = kMi+Gi . The set of values of ki so fixed constitute a merge cycle if they

satisfy Equation (8), which reduces to:8j 2 [1; n] :
Xi2[1;n];i6=j k �MiMi +Gi � k �GjMj + Gj) 8j 2 [1; n] :
Xi2[1;n];i6=j MiMi + Gi � GjMj + Gj (10)

Substituting GjMj+Gj = 1� MjMj+Gj in Equation (10), which is surprisingly independent of k, and rearranging

terms, we get: nXi=1

MiMi + Gi � 1

which is nothing but the merge condition (Equation (2)), which goes to prove that, the scaled placement

policy yields a solution whenever the merge condition is satisfied.2
When k1; k2; :::; kn in a merge cycle satisfy Equation (8), for each strand Si, fetching its ki blocks within

each merge cycle is sufficient to guarantee continuous retrieval for the duration of the merge cycle. At a display

device, up to 2�ki buffers may be required for strand Si: one set of ki buffers to hold the blocks being transferred,

and another set to hold the blocks being displayed (in Section 4, we will present techniques for computing the

exact buffering requirements of a merged strand). In turn, given the bounds on buffering available at display

www.manaraa.com

13

devices, bounds on the values of ki can be fixed, from which, bounds on the values of k can be determined by

Equation (9). Among all such bounds of k, the lowest is chosen as its value, from which the tightest values of ki
are recomputed, again by using Equation (9). The ki’s so computed are used in the scaled placement policy for

off-line merging of media strands.

However, the values of ki so obtained may not be integral (unless k is chosen to be an integral multiple

of LCM(M1 + G1;M2 + G2; :::;Mn+ Gn), which can, of course, be prohibitively large). Since the display of

media strands typically proceeds in terms of quanta such as frames, assuming each media block contains a display

quantum (as in our hardware environment), retrieval of a fraction of a block placed in a merge cycle cannot be used

for display. Consequently, the display will have to starve until the remaining fraction of the block arrives, which

will be at the beginning of retrieval of the next merge cycle. Hence, it is essential that the values of fk1; k2; :::; kng
all be integers. Deriving integral values by uniformly truncating or rounding off ki’s obtained from the tightest

value of k (which itself is derived from buffering limitations, as described earlier), may violate Equation (8) and

thereby violate continuity constraints. We now describe a technique for toggling between bkic and dkie from one

merge cycle to the next in a staggered manner among strands, so as to guarantee that continuity of retrieval of all

the media strands remain satisfied without ever overflowing the available buffers at display devices.

3.2.2 Scaled Placement with Integral Quanta

Let the values of fk1; k2; :::; kng yielded by Equation (9) (upon using the tightest value of k obtained from

display buffering limitations) be: 8i 2 [1; n] : ki = Ii + Fi
where Ii and Fi are the integer and the fractional parts, respectively, of ki. If I = Pni=1 Ii and F = Pni=1 Fi,
then (I + F) denotes the average number of media blocks that constitute a merge cycle. In the technique that we

present, the number of blocks laid out for a strand Si within a merge cycle toggles between bkic and dkie, so that

on an average, the number of blocks of strand Si stored in a merge cycle is ki. However, in doing so, continuous

retrieval requirements that would have been guaranteed to have been met by fk1; k2; :::; kng, must continue to

be satisfied. In particular, since a fractional block cannot be used for display, for any merge cycle Di, the total

number of blocks of each strand Si, stored upto and including Di, must equal at least the integral number of

blocks that would have been available for display, had ki blocks of Si been stored in each merge cycle. Formally,

www.manaraa.com

14

if Kc = fkc1; kc2; � � �kcng, where kci can equal either Ii or (Ii + 1), is the set of numbers of blocks of the n strands

stored in a merge cycle c, it should be the case that:8i 2 [1; n] :
DiXc=1

kci � bDi � kic (11)
In order to layout the media strand Si so as to satisfy this inequality, Ii = bkic blocks are stored in each merge

cycle c, until a deadline merge cycle Di, in which the difference (Di � ki �PDic=1 kci) just reaches or goes past a

value of 1 for the first time, reversing the inequality (11). Since Ii and ki can differ by at most 1, the inequality

can be re-established in the deadline merge cycle by storing Ii + 1 blocks instead of Ii.
The earliest deadline merge cycle can be computed from Equation (11), assuming Ii (and not Ii + 1) blocks

have been stored in all preceding merge cycles, i.e., 8c 2 [1; Di] : kci = Ii, in which case, inequality (11) reduces

to: Di � (ki � Ii) � 1

yielding the equation for the earliest deadline merge cycle as:Di = d 1ki � Ii e = d 1Fi e (12)
Later deadline merge cycles can be computed iteratively in a similar manner.

Having computed the deadline merge cycles for each strand Si, the storage server need not wait until such

cycles to store Ii + 1 (instead of Ii) blocks of the strand. Alternatively, the server can order the strands in the

order of earliest deadline merge cycle first, and as soon as it finds enough extra space in a merge cycle, store the

additional blocks for strands in that order. This way, the toggling of Ii to (Ii + 1) for strands are dynamically

staggered so as never to exceed available space in each merge cycle. However, waiting until their respective

deadline merge cycles to transfer additional blocks of strands has the advantage of not requiring any more buffers

than that for which ki’s were derived2 (earlier in Section 3.2.1).

It can be shown that, in the above technique, for each strand Si, there will always be sufficient space to

store its additional block at or before its deadline merge cycle. To see why, consider the accumulated slack space

available in a deadline merge cycle:Slack(Di) = Di � ki � DiXc=1

kci = Di � (ki � Ii)
2That the number of buffers is the same whether ki’s or kci ’s are used, is evident from the following observation: When additional

blocks are placed in deadline merge cycles, the LHS and RHS of Equation (11), which relates the kci ’s to ki’s, can differ by at most a fraction;
assuming fixed size buffers, such a fractional difference does not reduce the number of buffers.

www.manaraa.com

15

Substituting for Di from Equation 12, we obtain the desired result:Slack(Di) � 1

showing that there will always be space for an additional block in a deadline merge cycle.

4 Determining the Read-Ahead and Buffering

During retrieval of a media strand, media blocks are both (1) continuously retrieved from the disk and added

to an intermediate buffer by the multimedia server, and (2) continuously removed from the buffer by the display

device. If the strand were to be stored in accordance with its unmerged pattern, and continuity requirements

were satisfied exactly, each block would be transferred to the buffer just prior to its playback time. However, an

important consequence of merging (either on-line or off-line) is that the continuity requirements, which hold for

every block in a strand’s pattern, are now guaranteed to hold only on an average over an entire merge cycle. Within

a merge cycle, the media blocks of a strand may be scattered in the gaps of other strands that were available at

the time of its merging. Thus, in order to guarantee timely availability of media blocks for continuous playback,

a read ahead of at most one merge cycle may be necessary before initiating playback. The media blocks that are

retrieved during a read ahead need to be stored in the intermediate buffer between the multimedia server and the

display device. The buffer occupancy (i.e., the number of media blocks in buffer) starts with being equal to the

read ahead, and grows and diminishes over a period of a merge cycle depending on the actual layout of media

blocks. We now present techniques for computing the exact read-ahead and buffering requirements for continuous

playback of merged strands.

Consider the retrieval of a merged strand from disk. At the time when the multimedia server is transferring

blocks at a position x on the disk, let M (x) denote the number of media blocks retrieved from the disk and D(x)
the number displayed. Hence, the buffer occupancy B(x) is given by:B(x) = M (x)�D(x)
Figure 4, referred to as the buffer occupancy chart, graphically illustrates the above equation, with D(x) being

linearly increasing because of an assumed constant display rate, and M (x) consisting of a succession of ramps,

with each ramp representing the retrieval of a media block, and the horizontal steps between the ramps representing

gaps between media blocks.

www.manaraa.com

16

Buffer

Bmax

min

D(x)

B’(x)

B(x)

Location on disk (x)

Shift = B

occupancy

Bmin

M(x)

Figure 4: Buffer occupancy chart

If the buffer occupancy were to ever become negative, then, at that instant, the display device would be

starved of the required media block, resulting in a loss of continuity. Such a discontinuity can only be averted by

a read ahead: the amount of read ahead must be such that, in its presence, the buffer can be empty at minimum,

i.e., the buffer occupancy curve must be shifted so as to touch the x-axis at its lowest point (such a shifted curve

is represented by dotted curve in Figure 4). Specifically, ifBmin = jmin8x B(x)j
and Bmax = max8x B(x)
then the dotted curve represents B0(x) = B(x) +Bmin
which is nothing but B(x) shifted upwards by Bmin.

The exact amount of read ahead that is necessary depends on where the retrieval starts on the disk3, and can

be as much as the difference in the height between the highest and lowest points on the buffer curve (which could

3The read ahead need not beBmin , except when the retrieval starts at some position to the left of the origin (assuming the media strand
stretches to infinity on both sides of the origin), in such a way that at the end of the read ahead, the disk head is positioned at location zero (at
which instant the display is also initiated).

www.manaraa.com

17

be the case, for instance, if the retrieval were to start just before the location where the curve reaches the maximum

height), given by: Bmin +Bmax.

We will now present a technique to precisely compute the read ahead, given that the retrieval starts at an

arbitrary location Xstart (see Figure 5). If the buffer occupancy were to follow the curve B0(x), playback

is guaranteed to be exactly continuous (since the buffer occupancy never becomes negative), in which case,

when the disk head is retrieving the media block from location Xstart, the buffer would contain B0(Xstart) =B(Xstart) + Bmin media blocks. Consequently, media blocks retrieved at location Xstart would be displayed

only after the time to display B0(Xstart) media blocks, given by: Tinit(Xstart) = B0(Xstart) � �, has elapsed.

During this time, the disk head would have advanced by B0(Xstart) � � � � sectors past the location Xstart, i.e.,

the disk head would be positioned at: Xinit = Xstart +B0(Xstart) � � � �
At the instantXstart’s media block is displayed, the disk head is positioned at Xinit, and the buffer occupancy isB0(Xinit). Since the curveB0(x) represents a retrieval/display equilibriumprocess that exactly satisfies continuity

requirements, B0(Xinit) is also the smallest buffer occupancy that is needed at the time of display of Xstart’s
media block. Thus, if the media strand were to be retrieved and displayed starting from Xstart, B0(Xinit) would

become the initial read ahead necessary, and is given by:R(Xstart) = B0(Xinit) = B(Xstart + (B(Xstart) + Bmin) � � � �) +Bmin
The time Tinit(Xstart) = B0(Xstart) � � represents the initiation latency from the time of retrieval start to the

time of display start, during which period the read ahead is performed.

5 Experience and Performance Evaluation

At the UCSD Multimedia Laboratory, we are developing a prototype multimedia server on a 486-PC, having a

disk configuration consisting of 10 platters, each with 823 tracks. Each track is arranged in 64 sectors of 512 bytes

each, and hence, has a capacity of 32768 bytes/track. The maximum rotational latency of the disk is 16:66 ms, and

the data transfer rate is: � = 3840 sectors/second. The multimedia server provides video and audio on-demand

recording and retrieval services to several multimedia stations connected via ethernets and FDDI (see Figure 6).

Each multimedia station consists of a Sun SPARCstation, a PC-AT, a video camera, and a display monitor. The

www.manaraa.com

18

Bmin

B(x)

XX
initstart

start B’(x) = B(x) + B min

occupancy
Buffer

Location on disk (x)T (X) * init

B’(X)

start δ

initB’(X)

Figure 5: Determination of read-ahead and buffering requirements

PC-ATs are equipped with digital video and audio processing hardware produced by UVC Corporation [6]. The

audio hardware digitizes audio signals at 8 KBytes/sec. The video hardware can digitize and compress motion

video at real-time rates.

Prefetch Buffer Prefetch Buffer

Workstation Workstation

Buffer Cache

PC-AT PC-AT

Storage Disk

VideoVideo
Monitor Monitor CameraCamera

Ethernet/FDDI

486-PC

Multimedia Server

Multimedia Station Multimedia Station

Figure 6: Hardware configuration of our multimedia server prototype

We have implemented the on-line and off-line merging algorithms and carried out their preliminary perfor-

mance estimation for video strands (which are the most demanding in terms of performance) whose recording

rates could be fixed at one of six levels: 32 or 16 frames/sec, 30 or 15 frames/sec, and 20 or 10 frames/sec (which

www.manaraa.com

19

are the operational frame rates of our hardware video digitizer). For each of these six strands, media blocks were

chosen to be the smallest possible, i.e., containing one frame each, with each frame occupying about 25 sectors

(which is about 12.8 Kbytes). The resulting gap sizes computed from Equation (1) are: 95, 103, 167, 215, 231,

and 359 sectors, respectively.

Under these constraints, when the strands are stored independently (i.e., without merging), then the average

storage efficiency is found to be about 14%. On the contrary, both on-line and off-line merging techniques yield a

storage efficiency of about 80%, thereby providing evidence of the significant improvements in storage utilization

that can be expected due to merging.

For the on-line algorithm, the read-ahead and buffering requirements increase with the increase in the

fragmentation of a strands’s blocks, and hence, yield highest values for the last merged strand. This is the case

when the gap size at the time the last strand arrives is the minimum, requiring that the strands arrive in the order

of smallest gap size first, which is nothing but highest recording rate first (since the media block size is assumed

to be the same for all the strands). For such a scenario, Table 2 shows the large increases in merge cycle lengths

accompanying each successive merger of the video strands using the on-line algorithm, with the cycle length

reaching a maximum of 11520 sectors when the sixth and the final strand (with recording rate of 10 frames/sec)

is merged.

Recording rates of Merge cycle length
sequences of merged strands (in sectors)f32g 120f32; 30g 1920f32; 30; 20g 1920f32; 30; 20; 16g 1920f32; 30; 20; 16;15g 3840f32; 30; 20; 16;15;10g 11520

Table 2: Prohibitive increase in the merge cycle length in on-line merging

For the same above mentioned scenario, Figures 7 and 8 show the buffer utilization charts for the greedy and

the uniform layout policies, respectively. In these figires, buffer underflow, which causes discontinuities during

playback, are depicted by negative values of buffer occupancy. Consequently, the lowest negative values in the

charts define the initial read ahead necessary to guarantee continuity of display, and the differences between the

www.manaraa.com

20

0

50

100

150

200

250

B
u

ff
er

 o
cc

u
p

an
cy

 (
se

ct
o

rs
)

0 1000 2000 3000 4000 5000 6000 7000 8000
Location on disk (sectors)

Figure 7: Buffer occupancy when the greedy layout policy is used in on-line merging

-30

-20

-10

0

10

20

30

B
u

ff
er

 o
cc

u
p

an
cy

 (
se

ct
o

rs
)

1000 2000 3000 4000 5000 6000 7000 8000

Location on disk (sectors)

Figure 8: Buffer occupancy when the uniform layout policy is used in on-line merging

maximum positive value and the minimum negative value define the total buffer size needed. It can be seen that,

whereas the greedy layout policy, which packs media blocks continuously starting from the very first gap, requires

no read ahead but a buffer size of 200 sectors (Figure 7), the uniform layout policy, which uniformly distributes

the media blocks over all the gaps, requires a read ahead of about 10 sectors and a buffer size of only 35 sectors

(Figure 8). Clearly, the uniform layout policy yields a large reduction in the buffering requirements as compared

to the greedy policy.

For the off-line algorithm, assuming the availability of two buffers for each strand (one to hold the block being

transferred and the other for the block being displayed), the values of ki obtained by the scaled placement policy

for each of the six strands are shown in Table 3, yielding a total merge cycle length of 120 sectors, out of which,

www.manaraa.com

21

Video strand Block size M Gap size G Pattern ki’s determined Sequences of
recording rates (sectors) (sectors) M + G using scaled placement deadline (1’s) and

(frames/sec) (sectors) non-deadline (0’s)
merge cycles

32 25 95 120 1 f1; 1; 1; :::g
30 25 103 128 0.9375 f1; 0; 1; 1; :::; 1;0; :::g
20 25 167 192 0.625 f1; 0; 0; 1;1;0; 1; 1; :::g
16 25 215 240 0.5 f1; 0; 0; 1;0;1; 0; 1; :::g
15 25 231 256 0.46875 f0; 0; 1; 0; 1;0;1; :::g
10 25 359 384 0.3125 f0; 0; 0; 1; 0;0;1; :::g

Table 3: Off-line merging using the scaled placement policy

23 sectors are unoccupied, resulting in a storage efficiency of 80 %, which is same as that of the on-line algorithm.

Transforming the same ki into integral values results in the sequences of deadline merge cycles shown in the last

column of Table 3 (“1” in the sequence represents a deadline merge cycle, and “0” represents a non-deadline

merge cycle). Since the total number of buffers required is just two for each strand, the off-line algorithm yields a

reduction in the buffering requirements. Furthermore, display can be initiated as soon as a media block is retrieved

from the disk, thereby eliminating the need for any read-ahead.

6 Concluding Remarks

We have addressed the problem of collocational storage of multiple media strands on disk. We have presented

a model that relates disk and device characteristics to the playback rate of media strands, and derives storage patterns

that can guarantee their continuous retrieval. To efficiently utilize the disk space, we have developed techniques

for merging storage patterns of multiple media strands. We have proposed both an on-line algorithm suitable

for merging a new media strand into a set of already stored strands, and an off-line merging algorithm that can

be applied a priori to the storage of a set of media strands before any of them have been stored on disk. The

on-line algorithm uses uniform layout techniques to minimize read-ahead and buffering requirements. The off-line

algorithm can operate with much smaller buffer sizes, and it does so by using a staggered toggling technique in

which sizes of successive media blocks are fine tuned individually so as to together not exceed the available buffer

size (without, of course, violating the playback rate requirements of any of the strands). These algorithms are

being implemented in the multimedia storage server being developed at the UCSD Multimedia Laboratory. Initial

www.manaraa.com

22

performance estimations demonstrate significant gains in storage space utilization as a result of using both on-line

and off-line merging algorithms. We are extending the techniques to handle variable block sizes and finite strands,

as well.

References

[1] C. Abbott. Efficient Editing of Digital Sound on Disk. Journal of Audio Engineering, 32(6):394–402, June
1984.

[2] P. B. Berra, C. Y. R. Chen, A. Ghafoor, C. C. Lin, T. D. C. Little, and D. Shin. An Architecture for Distributed
Multimedia Database Systems. Computer Communications, 8(3):413–427, April 1990.

[3] E. A. Fox. The Coming Revolution in Interactive Digital Video. Communications of the ACM, 7(32):794–801,
July 1989.

[4] J. Gemmell and S. Christodoulakis. Principles of Delay Sensitive Multimedia Data Storage and Retrieval.
ACM Transactions on Information Systems, 10(1):51–90, 1992.

[5] S. Gibbs, D. Tsichritzis, A. Fitas, D. Konstantas, and Y. Yeorgaroudakis. Muse: A Multi-Media Filing
System. IEEE Software, 4(2):4–15, March 1987.

[6] M. Leonard. Compression Chip Handles Real-Time Video and Audio. Electronic Design, 38(23):43–48,
December 1990.

[7] Y. Mori. Multimedia Real-Time File System. Technical report, Matshushita Electric Industrial Co., February
1990.

[8] B.C. Ooi, A.D. Narasimhalu, K.Y. Wang, and I.F. Chang. Design of a Multi-Media File Server using Optical
Disks for Office Applications. IEEE Computer Society Office Automation Symposium, Gaithersburg, MD,
pages 157–163, April 1987.

[9] P. Venkat Rangan and D. C. Swinehart. Software Architecture for Integration of Video Services in the
Etherphone Environment. IEEE Journal on Selected Areas in Communication, 9(9):1395–1404, December
1991.

[10] P. Venkat Rangan and Harrick M. Vin. Designing File Systems for Digital Video and Audio. In Proceedings
of the 13th Symposium on Operating Systems Principles (SOSP’91), Operating Systems Review, Vol. 25, No.
5, pages 81–94, October 1991.

[11] P. Venkat Rangan, Harrick M. Vin, and Srinivas Ramanathan. Designing an On-Demand Multimedia Service.
IEEE Communications Magazine, 30(7):56–65, July 1992.

[12] W. D. Sincoskie. System Architecture for a Large Scale Video on Demand Service. Computer Networks and
ISDN Systems, North-Holland, 22:155–162, 1991.

[13] C. Yu, W. Sun, D.Bitton, Q. Yang, R. Bruno, and J. Yus. Efficient Placement of Audio Data on Optical Disks
for Real-Time Applications. Communications of the ACM, 7(32):862–871, July 1989.

