To appear in the |EEE Transactions on Knowledge and Data Engineering

Foecial I1ssue on Multimedia Information Systems, August 1993

Efficient Storage Techniques for Digital Continuous
Multimedia

P. Venkat Rangan & Harrick M. in

Multimedia L aboratory
Department of Computer Science and Engineering
University of Californiaat San Diego
LaJolla, CA 92093-0114

E-mail: venkat@cs.ucsd.edu, Phone: (619) 534-5419, Fax: (619) 534-7029

Abstract

Advancesin storage and networking have led to the development of multimedia computing systems capable
of offering services such as multimedia mail, news distribution, advertisement, and entertainment. Supporting
such services requires the integration of storage and transmission of multimedia data with computing. In this
paper, we address the problem of collocational storage of media strands, which are sequences of continuously
recorded audio samples or video frames, on disk. We present a model that relates disk and device characteristics
to the playback rates of media strands, and derives storage patterns so as to guarantee continuous retrieval of
media strands. To efficiently utilize the disk space, we develop mechanisms for merging storage patterns of
multiple mediastrands, by filling the gapsbetween mediablocks of one strand with mediablocksof other strands.
We propose both an on-line algorithm suitable for merging anew media strand into a set of already stored strands,
and an off-line merging algorithm that can be applied a priori to the storage of a set of media strands before any
of them have been stored on disk. As a consequence of merging, storage patterns of media strands may become
perturbed slightly, to compensate which, read-ahead and buffering are required so that continuity of retrieval
remains satisfied. We present techniques for minimizing both read-ahead and buffering. These techniques are
being implemented in the multimedia storage server being developed at the UCSD Multimedia Laboratory.

Index terms: Digital video and audio storage, continuousretrieval, merging techniques, read ahead, buffering

www.manaraa.com

1 Introduction

Future advances in networking will make it feasible for digital computer networks to support video trans-
mission [3, 12]. Coupled with the rapid advances in storage technologies, they can be used to build services such
as multimediamail, news distribution, advertisement, and entertainment over metropolitan-area networks such as
B-I1SDN [2, 11]. Supporting such services requires the integration of storage and transmission of multimediadata
with computing. Whereas transmission of digital multimediadatawill havetowait afew moreyearsfor ultra-high
bandwidth networksto become pervasive, theintegration of multimediastorage with distributed computing merits
immediate attention.

Digital video and audio differ fundamentally from text in three important ways with regard to their storage

requirements:

o Multiplicity of media streams: A multimedia object consists of several media components (such as audio
and video), which, generally, are separated at the input and arrive at the storage server as different streams.
Storing these media together may entail additional processing for combining them during storage, and for
separating them during retrieval . Storing them separately, on the other hand, requiresthat the storage server

maintain explicit temporal relationships among the media so as to ensure synchronousretrieval .

e Continuity of recording and retrieval: Recording and playback of motion video and audio are continuous
operations. The storage server must organize multimediadata on disk so asto guarantee that their recording

and retrieval proceed at their respective real-timerates.

e Largedatasize: Video and audio data have very large storage space requirements. If the storage system is
to act as a basis for supporting document editing, mail, distribution of news and entertainment, etc., it must

organize multimediadata on the disk so asto efficiently use the limited avail able space.

The design of a high-performance multimedia storage server that addresses the above requirements of real-
time digital video and audio isthe subject matter of this paper. Specifically, we define a sequence of continuously
recorded audio samples or video frames as a Srand, and address the problem of collocational storage of multiple
media strandson disk. We present amodel that rel atesdisk and device characteristicsto the playback rate of media
strands, and for each media strand, derive a storage pattern consisting of a media block size and an inter-block

gap size that can guarantee the strand’s continuous retrieval. To efficiently utilize the disk space, we develop

www.manaraa.com

mechanisms for merging storage patterns of multiple media strands by filling the gaps between media bl ocks of
one strand with media blocks of other strands, but without violating the continuity requirements of either of the
strands. We propose both an on-line @ gorithm suitable for merging a new mediastrand into a set of already stored
strands, and an off-line merging a gorithm that can be applied a priori to aset of media strands before any of them
have been stored on disk. The off-line algorithm can operate with much smaller buffer sizes, and it does so by
using a staggered toggling technique in which sizes of successive media blocks are fine tuned individually so as
not to exceed the available buffer size. Asaconsequence of merging, the storage pattern, and hence the continuity
requirements, of media strands may not be maintained strictly for each media block. However, it is possible to
introduceread-ahead and buffering of afinite number of blocks so asto preserve the storage pattern and continuity
propertiesat | east on an average over afinite number of blocks. We present techniquesfor determining the amount
of read-ahead and buffering required to guarantee continuous retrieval of merged media strands. The merging
algorithms and techniques presented in this paper form a basis for a prototype multimedia storage server being
implemented at the UCSD MultimediaLaboratory [11].

The rest of thispaper is organized as follows: In Section 2, we present amodel for deriving storage patterns
of individua strands, and then review previous work in this area. In Section 3, we develop the agorithms for
merging multiple strands. Techniques for determining read-ahead and buffering of merged media strands are
presented in Section 4. In Section 5, we describe our prototype multimedia server and present its preliminary

performance results, and finally, Section 6 concludes the paper.

2 A Framework for Efficient Storage of Digital Multimedia

Digitizationof video yieldsasequence of frames, and that of audio yieldsasequence of samples. Werefertoa
sequence of continuously recorded video frames or audio samples as a Srand. A storage server must dividevideo
and audio strands into blocks while storing them on a disk. Most existing storage server architectures employ
random allocation of blocks on disk. Such storage servers cannot handle media strands because, separations
between blocks of a strand may not be constrained enough to guarantee bounds on access and latency times of
successive blocks of the strand. At the other end of the spectrum, contiguous allocation of blocks of a strand can
guarantee continuous access, but it is fraught with inherent problems of fragmentation and can entail enormous
copying overheads during insertionsand deletions. Constrained block allocation, on the other hand, can keep the

access time within media playback requirements without entailing the above disadvantages.

www.manaraa.com

Symbol | Explanation Unit

M Mediablock size in the storage pattern of astrand | sectors

G Gap sizein the storage pattern of a strand sectors

B Buffer size needed during the retrieval of astrand | bytes

R Read ahead necessary for retrieval of a strand bytes

p Rate of datatransfer to or from disk sectors/sec
5 Display time of a media block Sec

Table 1: Symbols used in this paper

There are two questions that need to be answered in constrained allocation of blocks of a media strand: (1)
What should the size of the blocks be? and (2) What should the separation between successive blocks of a strand
be? The guiding factor in determining the block size and the separation is the requirement of continuousretrieval
of media strands at their respective playback rates. Continuousretrieval of media strands can be guaranteed if the
timeto skip over agap and retrieve the next media block does not exceed the duration of its playback. Using the

symbols defined in Table 1, the condition for continuousretrieval can be formulated as:

<6 (1)

For each strand, the relative values of its media block size M and its separation between successive media
blocks G must satisfy Equation (1), which werefer to asthe continuity requirement. Sincetherearetwo parameters
and one equation, one of these parameters, namely the media block size, can be determined based on the hardware
environment and the amount of buffer space available at the display devices. Having fixed A/, the upper bound
on (G can be obtained by direct substitutionin Equation (1). Werefer to thepair (M, () asthe storage pattern of a
strand®. For example, if aHDTV quality video strand is digitized at 0.5 Mbits/frame and recorded at 60 frames/s
on a disk with data transfer rate of 25600 sectors/s (each sector equals 512 bytes, yielding a transfer rate of 100
Mbits/s), then choosing each media block to contain one video frame yields a storage pattern (M, () to be (125,
425) sectors. A strand consists of repetitions of this pattern (see Figure 1).

Note that user interaction using functions such as fast-forwarding can be supported by satisfying continuity

requirements at the fastest required display rate (i.e., a the smalest vaue of §). However, when blocks are

1Clearly, any increasein the value of M (which effectively increasesthe read-ahead) is also accompanied by a correspondingincreasein
G. Inthe extremecase, if M ischosen such that G' exceedsthe maximum seek and rotational latencies, then constrained allocation of media
blocks on disk degeneratesto unconstrained allocation.

www.manaraa.com

M = 125 sectors G = 4000 sectors

Figure 1: Representation of media strands as repetitions of storage patterns

displayed dlower than the fastest rate (e.g., in dow motion), continuity requirements become over-satisfied, and
retrieval of media blocks proceeds faster than their display, leading to accumulation of media blocksin buffers.
In order to prevent unbounded accumulation, the disk can switch to some other task after all the buffers alocated
to theretrieval of amedia strand are filled, and switch back when sufficient buffers become empty [10].

Even though bounding the separation between successive media blocks so as not to exceed G ensures
continuous retrieval of media strands, the separation between successive media blocks (namely, %) may, in
generd, be significantly larger than the time to read a media block from disk (namely, %). Hence, if aplacement
policy isbased solely on &, then only asmall fraction of thetime required to access amedia block may be spentin
readingitscontentsfrom disk, thereby yielding low datatransfer rates. Infact, if the separation between successive
mediablocksisset to be exactly equal to (6 x p — M), then amultimediastorage server can retrieve only one strand
at atime. In order to support simultaneous retrieval of multiple strands, it isessential that media blocks be placed
on disk in arotationally optimal manner. The rotationally optimal separation between media blocks depends on
the characteristics of themultimediastorage server (such as, thedelay incurred ininitiatinganew disk block access
after having completed a previous request), and defines alower bound G’ on the separation between successive
media blocks on disk. If a multimedia storage server ensures that the separation between each pair of successive
media blocks is within [7, G], then it is referred to as strict placement algorithm. On the contrary, an adaptive
placement al gorithm may accommodate occasional violationsof the bounds on the separation between successive
media blocks as long as the average separation over a finite window of blocksiswithin [G7,]. Whereas strict
placement of a media strand on disk permits its playback to be initiated from an arbitrary block without any
read-ahead, an adaptive placement may require a read-ahead equa to the number of media blocks within an
averaging window. The adaptive placement algorithm, however, is much more flexible since it may succeed in
placing mediablocks on disk even when the strict algorithm failsto do so. Both of these placement algorithmscan
exploit varying playback durations of media blocks (yielded from storing variable number of compressed media
unitsin each media block) by dynamically computing the separation between successive media blocks, and then

appropriately adjusting the layout of media strands on disk.

www.manaraa.com

In practice, a multimedia storage server needs to store thousands of media strands on disk. If there are
sufficiently large empty regions on the disk, each strand may be stored exactly in accordance with its storage

pattern. However, storing each strand independently entails the unusability of al the gapsin its storage pattern,

M

resulting in an occupancy of 57,

which, for the values of M and G computed earlier, is about % In order
to utilize the disk space efficiently, blocks of a new strand may have to be stored in the gaps of aready existing
strands on the disk. Werefer to thisprocess as merging. Depending on whether or not they preservetheindividual
storage patterns of the media strands at the time of merging, merging policies can be classified into the following

two categories:

e Storage Pattern Preserving (SPP) policies, which merge a set of media strands only if the storage patterns
of each of the strands can be strictly preserved even after being merged. That is, even after merging, each
mediablock of amerged strand must exactly equal A/ contiguoussectors, and the separation between every
two successive media blocks must exactly equal G contiguous sectors, thereby guaranteeing continuous

retrieval.

e Storage Pattern Altering (SPA) policies, on the other hand, may distribute media blocks of a strand being
merged into the gaps of existing strands, even if that causes bresks in the storage pattern of the merged

strand.

The SPP merging policies have been studied by Yu et al. [13]. But, because of their strict insistence on
exactly preserving the storage pattern of each strand, the SPP merging policy turns out to be inflexible and space
inefficient for multiple heterogeneous media strands.

SPA merging policies, sincethey cause perturbationsin the storage patterns of mediastrands, cannot guarantee
continuousretrieval of merged media strands. However, they maintain therel ativeratio of the size of mediablocks
and gapsfor each merged strandto be % at least onan average over afinitelength of thestrand. Consequently, by
introducing read-ahead and buffering of afinite number of mediablocks of each strand, so asto nullify the effects
of jitter due to perturbationsin its storage pattern, conti nuousretrieval can be reinsured. In thispaper, we develop
algorithms for SPA merging of multiple media strands, and obtain the read-ahead and buffering requirements
necessary for continuousretrieval.

In the recent past, multimedia storage systems have begun to receive much attention. However, most of

the past work is restricted to still images and/or audio [1, 5, 8]. Work by Rangan and Swinehart [9] supports

www.manaraa.com

video filing, but video is stored in an analog form on consumer electronic devices. The Matsushita’'s Rea Time
Storage System [7] has investigated some of the low level storage mechanisms for digital video. Gammell and
Christodoul akis[4] have described file system designsfor supporting multipleplayback channelsof delay sensitive
data. However, their scheme assumes contiguous storage of media strands on disk. Whereas contiguous storage
of media strands ensures efficient retrieval of individua strands, retrieval of a multimedia object (consisting of
severd media components - such as, audio and video), stored on disk as severa different contiguous strands,
may incur significant seek and rotational latencies due to switching between strands. In order to aleviate this
shortcoming, a model for the design of a file system for digital video and audio based on constrained block
allocation was first proposed by Rangan and Vin in [10]. In the next few sections, we significantly extend that
model by devel oping mechanisms for merging the storage of multiple synchronous strands, thereby minimizing

the overhead due to seek and the rotational latencies incurred during their concurrent retrieval .
3 Merging Techniques

Media strands may arrive for storage at a storage server either in an isolated fashion, one a atime, each
belonging to a different multimedia object, or simultaneously, many of them at the same time, which will in fact
bethe caseif al of them belong to the same multimedia object. Inthe former case, a newly arriving media strand
should be merged into strandsthat already exist onthe disk, whoselaid out storage patterns cannot be changed, and
istermed: On-line Merging. In the latter case, called off-line merging, the strand patterns of the simultaneously
arriving multiple media strands can be mutually adjusted prior to merging, so as to minimize read-ahead and
buffering requirements for continuousretrieval after their merged placement on disk. 1n the next two subsections,

we devel op agorithmsfor on-line and off-line merging, respectively.
3.1 On-lineMerging

Consider two media strands S1 and .S, with storage patterns (M1, G'1) and (M, G2), respectively. Let the
blocks of strand 53 belaid out on the disk in accordance with its storage pattern, thereby guaranteeing continuous
retrieval of S;. To efficiently utilize the storage space, the file system must store the blocks of S5 in the gaps of
the pattern for S1. The constraint in this process of merging is that the continuity requirement of .S, must not be
violated.

Merging of S, into S is straight-forward if G; = M, and M; = G». In such a case, each media block

of S, will exactly fit into a gap of S;. However, in general, this can be very restrictive. We will now derive

www.manaraa.com

the conditions for deciding whether the storage of two media strands can be merged together. Throughout this
analysis, we will assume that the lengths of media strands may not be bounded at the time of the start of its
recording, but that the read-ahead and the buffer sizes are required to be bounded.

Intuitively, aset of strands 51, S, ..., S, can be merged together if the sum of the fractions of space occupied

by media blocksof S1, 52, ..., S, doesnot exceed 1:

M, Mo M,
+ + -+ —-F<1 2
M1+ Gy M2+ Go My, +Gp ~ @)

We analyze this condition first for two strands, and then extend the analysis to multiple strands.
3.1.1 Binary On-lineMerging

If we simplify Equation (2) for two strands, we obtain:

M1 Mo
+ <1
Mi+G1 Ma+Gy —
Ml Mz GZ

= <1-— =
M+ G1 — Mo+ Gy, M>+Go

:>G1*G22M1*M2

The following proposition formally shows that the above condition is both necessary and sufficient for merging

of two strands:

Proposition 1 (Merge Condition) Let .57 and S> be two strands with associated storage patterns (M1, (1) and

(My, Gl2), respectively. We can merge strand S into strand .Sy if and only if,

G1xGa > M1+ My (3)

Proof: In order to merge strand S, into strand 51, the mediablocksin .S,’s pattern over afinitelength 7. must be
accommodated in the gaps of S1’s pattern of the same length. Thisis because, since the storage pattern of
S2 has been determined from continuity requirements, it is guaranteed that the time to display al of S>'s
media blocks over any finitelength L is sufficient to scan and transfer 7. sectors from the disk. Thus, after
merger, by reading ahead and buffering .S2’s media blocks contained within a chunk of length . of Si’s

pattern, .S,’s continuity of display is guaranteed to be satisfied.

www.manaraa.com

We will first show that, if Equation (3) is satisfied, then, over a length L equal to the lowest common
multiple of the patterns of strands 51 and 2, al the media blocks of S> can be accommodated within the
gaps of S, and hence S, can bemerged into 3. Let . = LCM(M3 + G'1, M2+ G2) bethelowest common
multipleof the patternsof .51 and S, from which we can obtain k1 and &2 suchthat k1« (M1 + G1) = L and
ko* (M4 G2) = L (see Figures 2(a) and 2(b)). That is, isthe number of sectorsin which k4 instances

of S1’s pattern or &, instances of S,'s pattern fit. Given that,
Gr1x Go > Myx M,

we obtain:
S GrxGa+Grx My > Myx My + Gpx Mo
@Gl*(Gz—l—Mz) > Mz*(Ml—l-Gl)
C}Gl*kl*kz*(Gz—l—Mz) > Mz*k‘l*k‘z*(Ml—l—Gl)
< Grrki+ L > Mo ky+ L

& Grrk1> Max ko (4)
Thus, k» media blocks of strand S, fit in k1 gaps of strand .51, thereby showing that length . of S, can be
accommodated in the same length of 5;.

On the other hand, suppose that it is possible to merge strand .S» into strand 51, that is (as explained at the
beginning of thisproof), thereexists afinitelength L such that asegment of length L of strand 5> fitswithin

a segment of the same length of strand S1. We will now show that Equation (3) must hold.

Let us suppose that, k1 patternsof 53 or &, patterns of .S, span alength L:
kyx (My+Gy) = L (5)
kox (M2+ Ga) =L (6)
Sincelength L of \S; fitsinto the same length of Sy, k2 media blocks of .S, must fit in &1 gaps of S:
ko* My < k1* Gy
Substituting for k1 and & from Equations (5) and (6) respectively, and simplifying yields that:

G1xGo > Myx M,

www.manaraa.com

which is nothing but Equation (3).

O

If the merge condition is satisfied, the smplest way to lay out S>'s media blocks is to fill them into Si’s
gaps continuoudly starting from the very first gap. After storing S2’s media blocksin a chunk of length 7. of S>'s
pattern in the first few gaps of a chunk of the same length 7 of S;1’s pattern, the remaining gaps in that chunk of
length 7 of S;1's pattern would be lft free. In thislayout policy, which weterm as greedy, if S»’s pattern is sparse
compared to the empty space availablein S1, alarge number of mediablocks of S, areread earlier than their time
of display, leading to peaks in buffering requirements (see Figure 2(c)).

The buffering requirements can be reduced by distributing the media blocksof .S» uniformly over al the gaps
of S1, SO as to guarantee that the separation between every pair of consecutive media blocks of S is amost the
same (see Figure 2(d)). Formally, if &, patterns of strand .51 and k- patterns of strand .S> span over amerge cycle

of length 7, then we define the pseudo block size of S, with respect to 57 as the smallest integer A/ such that
k’z*MﬁZk’l*Gl (7)

Since the storage patterns of S1 and .S, satisfy the merge condition, we know that &, « M, < k1 * G, yidding
that Mj > M. If M5 = M>, then the merge condition is exactly satisfied, and the media blocks of .S occupy all
the gaps of S1. If M4 > M>, then in each merge cycle, we can distribute the k5 blocks of .5, such that there are
either M5 — M, — 1 or M} — M> free sectors between consecutive media blocks of S». (To be precise, in each
merge cycle, ko« M} — k1 G1 blocks will have a separation of M} — M» — 1 sectors, and the remaining will
have a separation of M}, — M, sectors). The (k2 + 1)th block of S, will be stored exactly L sectors away fromthe
first media block of S, resulting in a pattern of filled and free sectors that repeets after every L sectors, whichis
the length of one merge cycle (see Figure 2). Such adistribution is almost uniformin the sense that the number

of free sectors between successive blocks of S, can differ only by one.
3.1.2 On-lineMerging of More than Two Strands

The above binary merging techniques can be easily extended to the storage of three or more strands. Let us
suppose that we have to merge n strands, 51, S2, S3, ..., S, - When thefirst two strands 57 and .S, are merged, the

resulting storage pattern can be viewed as that of a composite strand .51 », whose media block size M1 > and gap

www.manaraa.com

10

M2=4 G2=8

e Merge Cycle L =LCM (M1+G1, M24G2) =24 ————>
! kl1=3 k2=2

1

1

o s, T [

s, THEN TN [N

81'2 =merge (S, %) using Uniform Placement Strategy

Figure 2: On-linemerging of strand .S into S1

size Gy » are given by:

M]_yz = ki1*x M1+ kox M,

G2

Lip— Mo

where L1 » = LCM(M1 + G1, M + G2) isthelength of the pattern, k1 = Mf}fGl, and ko = Mfsz. The merger

of .53 with S > can now be carried out using the binary merging techniquesto yield strand 51 2 3. Continuing the
merge operation in thisfashion, the » strands can be merged using a sequence of n — 1 binary merge operations,
resulting in afina compositestrand, S123..»

Deletion of astrand S; from a composite strand S1 > . ,, releases the sectors occupied by the media blocks
of strand S; to the pool of gaps of the composite strand S1» . ,. Let (M;, G;) and (M1, »,G12,. .) denote
the storage patterns of strands .S; and S1 5, ,, respectively, and that &; patterns of strand 5; exist in each pattern
of S12. .. Then, deleting S; from S1, ., yields a strand 51,2,...,n with storage pattern (M/, GG}), where
Mi,z,...,n = Mo n— ki *M; and G’l,z,...,n = G12..n+ ki x M;. Consequently, the length of the storage
pattern of the composite strand, namely (M, , + G,), remainsthe same. If, however, the strand to be

deleted representsthelast one to be merged, then del etion restoresthe pattern to that beforethe last merge, thereby

www.manaraa.com

11

decreasing the pattern length of the composite strand. For example, if strand S,, is deleted from a composite
strand S12, .. », theparameters Ly > ., G12.. n,and My ., arerestored backto L1o . n—1, G12,... n—1, aNd
Mo . ,_1, respectively, which are the values prior to the merging of strand 5, into 512 ,—1.

Notice that, as more and more strands are merged together, gaps become more and more scarce. Hence,
larger merge cycle lengths (1) are necessary for storing the media blocks of newer strands, leading to increases in
buffer space requirements. On the contrary, if none of the strands that need to be stored by a multimedia storage
server have been physicaly placed on the disk, the patterns of each of the strands can be determined so as to be
exactly mergesble, thereby eliminating pattern deviationsfor any of the strands when they are stored in amerged
form, and consequently reducing the buffer space requirements. Such an off-line merging technique, suitable for

the placement of media strands on write-once optica disks (such as, WORMs and CLVs), is elaborated next.
3.2 Off-lineMerging

Suppose that media strands S1, So, ..., S, with storage patterns (M, G1), (M2, G2), ..., (M, Gy,), respec-
tively, are to be stored in a merged form on the disk. In off-line merging, suppose that we place the strands on
disk such that chunksof k; blocksof 51, k2 blocksof Ss, ..., k, blocksof S,, follow each other, and the sequence

repeats indefinitely (see Figure 3).

kl1=2 k2=4 k3=3 k4 =6 k5=9
i i
; Merge Cycle]

Figure 3: Off-line merging

Guaranteeing retrieval at its playback rate for each strand S; requires that the space occupied by blocks of
al other strands .S; (5 # ¢) (between two successive chunks of blocks of .5;) does not exceed the total gap space
permitted for the &; blocks (present in each chunk) of S;. That is,

Vstrands S;,i € [Ln]: > kjx My < kixGi (8)

J€Ln]j#
The values of k1, ko, ..., k,, satisfying the above system of n equations define a merge cycle. Asasolution to the
above system of equations, we now propose a scaled placement policy, inwhich the number of consecutive blocks

of strands placed in amerge cycle are inversely related to their pattern length.

www.manaraa.com

12

3.21 Scaled Placement Policy for Off-line Merging

In the scaled placement policy, the number of consecutive blocks ; of astrand .S; placed in amerge cycleis
inversely scaled by itspattern length (i.e, M; + G;). Thatis, Vi € [1, n]:

k
ki = ——— 9
M; + G; ()

where, k isaconstant. The followingtheorem provesthat the scaled placement policy will alwaysyield asolution

if one exists, thereby showing that it is completein its effectiveness.

Theorem 1 Whenever the merge condition (Equation (2)) is satisfied, the scaled placement policy alwaysyields

amerge cycle.

Proof: In the scaled placement policy, the number of consecutive blocks %; in a chunk of a strand S; placed in

amerge cycleisgiven by k; = ﬁ The set of values of k; so fixed congtitute a merge cycle if they

satisfy Equation (8), which reduces to:

kx M; k+ G
vielnl: > = < !
i€[1,n]ij M+ G = M; + G
. M; G
=Vie[Ln: > Mi—i—GiSM»—i—]G» (10)
i€[1,n]ij J J

Substituting ﬁ =1- % in Equation (10), whichissurprisingly independent of k&, and rearranging

terms, we get:

n

M;
2ovita St

which is nothing but the merge condition (Equation (2)), which goes to prove that, the scaled placement

policy yields a solution whenever the merge condition is satisfied.

O

When k1, ko, ..., k, in @ merge cycle satisfy Equation (8), for each strand S;, fetching its £; blocks within
each merge cycleis sufficient to guarantee continuous retrieval for the duration of the merge cycle. At adisplay
device, upto 2« k,; buffersmay berequired for strand .S;: oneset of k; buffersto hold the blocksbeing transferred,
and another set to hold the blocks being displayed (in Section 4, we will present techniques for computing the

exact buffering requirements of a merged strand). In turn, given the bounds on buffering available at display

www.manaraa.com

13

devices, bounds on the values of k; can be fixed, from which, bounds on the values of k¥ can be determined by
Equation (9). Among al such bounds of %, the lowest is chosen asits value, from which the tightest values of ;
are recomputed, again by using Equation (9). The k;’s so computed are used in the scaled placement policy for
off-line merging of media strands.

However, the values of k; so obtained may not be integral (unless k is chosen to be an integra multiple
of LCM(M1 + G, Mz + G, ..., My, + G,), which can, of course, be prohibitively large). Since the display of
media strandstypically proceeds in terms of quanta such as frames, assuming each media block containsadisplay
guantum (asin our hardware environment), retrieval of afraction of ablock placed in amerge cycle cannot be used
for display. Consequently, the display will have to starve until the remaining fraction of the block arrives, which
will be at the beginning of retrieval of the next merge cycle. Hence, itisessentia that thevaluesof {k1, ko, ..., k,}
all beintegers. Deriving integra values by uniformly truncating or rounding off k;’s obtained from the tightest
value of k (which itself is derived from buffering limitations, as described earlier), may violate Equation (8) and
thereby violate continuity constraints. We now describe atechnique for toggling between | ; | and [4;] from one
merge cycle to the next in a staggered manner among strands, so as to guarantee that continuity of retrieval of all

the media strands remain satisfied without ever overflowing the available buffers at display devices.

3.2.2 Scaled Placement with Integral Quanta

Let the values of {ki, ko, ..., k,} yielded by Equation (9) (upon using the tightest value of % obtained from
display buffering limitations) be:

ViE[l,n]: k, =1+ F;

where I; and F; are the integer and the fractional parts, respectively, of k;. If I =57 L and F = 5" | F},
then (7 + F') denotes the average number of media blocks that constitute a merge cycle. In thetechnique that we
present, the number of blocks laid out for astrand .S; within a merge cycle toggles between | ;| and [;], so that
on an average, the number of blocks of strand .S; stored in amerge cycleis k;. However, in doing so, continuous
retrieval requirements that would have been guaranteed to have been met by {k1, k2, ..., k,}, must continue to
be satisfied. In particular, since a fractiona block cannot be used for display, for any merge cycle D;, the total
number of blocks of each strand S;, stored upto and including D);, must equal at least the integral number of

blocksthat would have been available for display, had ; blocks of S; been stored in each merge cycle. Formally,

www.manaraa.com

14

if Ko = {kj, kS, -k}, where k{ can equal either I; or (I; 4+ 1), isthe set of numbers of blocks of the n strands

stored in amerge cycle ¢, it should be the case that:
D,
Vie[Ln]: Y kf>|D; kil (11)
c=1

In order to layout the media strand .S; so asto satisfy thisinequality, 7; = |k;| blocks are stored in each merge
cycle ¢, until adeadline merge cycle D;, in which the difference (D; k; — Zf:’l k¢) just reaches or goes past a
value of 1 for thefirst time, reversing the inequality (11). Since I; and k; can differ by at most 1, the inequality
can be re-established in the deadline merge cycle by storing 7; + 1 blocksinstead of 7;.

The earliest deadline merge cycle can be computed from Equation (11), assuming /; (and not 7; + 1) blocks
have been stored in all preceding merge cycles, i.e, Ve € [1, D;] : k¢ = I;, inwhich case, inequality (11) reduces
to:

Dix(k;—1)>1
yielding the equation for the earliest deadline merge cycle as:

D; = |—ki i IZJ = [Fii} (12)

Later deadline merge cycles can be computed iteratively in a similar manner.

Having computed the deadline merge cycles for each strand S;, the storage server need not wait until such
cycles to store I; + 1 (instead of ;) blocks of the strand. Alternatively, the server can order the strands in the
order of earliest deadline merge cycle first, and as soon as it finds enough extra space in a merge cycle, store the
additional blocks for strands in that order. This way, the toggling of I; to (I; + 1) for strands are dynamically
staggered so as never to exceed available space in each merge cycle. However, waiting until their respective
deadline merge cycles to transfer additional blocks of strands has the advantage of not requiring any more buffers
than that for which k;’s were derived? (earlier in Section 3.2.1).

It can be shown that, in the above technique, for each strand S;, there will aways be sufficient space to
storeitsadditional block at or before its deadline merge cycle. To see why, consider the accumul ated slack space

available in a deadline merge cycle:

D;
Slack(DZ) = Di * kz — Zkf = Di * (kz — Iz)
c=1

2That the number of buffers is the same whether &;’s or k¢'s are used, is evident from the following observation: When additional
blocksare placed in deadline merge cycles, the LHS and RHS of Equation (11), which relatesthe ££’sto &;’s, can differ by at most afraction;
assuming fixed size buffers, such afractional difference does not reduce the number of buffers.

www.manaraa.com

15

Substituting for 1; from Equation 12, we obtain the desired result:

Slack(D;) > 1
showing that there will always be space for an additional block in a deadline merge cycle.
4 Determining the Read-Ahead and Buffering

During retrieval of amedia strand, media blocks are both (1) continuoudly retrieved from the disk and added
to an intermediate buffer by the multimedia server, and (2) continuously removed from the buffer by the display
device. If the strand were to be stored in accordance with its unmerged pattern, and continuity requirements
were satisfied exactly, each block would be transferred to the buffer just prior to its playback time. However, an
important consequence of merging (either on-line or off-line) is that the continuity requirements, which hold for
every block inastrand’ spattern, are now guaranteed to hold only on an average over an entire merge cycle. Within
a merge cycle, the media blocks of a strand may be scattered in the gaps of other strands that were available at
the time of its merging. Thus, in order to guarantee timely availability of media blocksfor continuous playback,
aread ahead of a most one merge cycle may be necessary before initiating playback. The media blocks that are
retrieved during a read ahead need to be stored in the intermediate buffer between the multimedia server and the
display device. The buffer occupancy (i.e., the number of media blocksin buffer) starts with being equal to the
read ahead, and grows and diminishes over a period of a merge cycle depending on the actua layout of media
blocks. We now present techniques for computing the exact read-ahead and buffering requirementsfor continuous
playback of merged strands.

Consider theretrieval of a merged strand from disk. At the time when the multimedia server is transferring
blocks at aposition # on thedisk, let M () denotethe number of media blocksretrieved from the disk and D(x)

the number displayed. Hence, the buffer occupancy B(z) isgiven by:

Figure 4, referred to as the buffer occupancy chart, graphically illustrates the above eguation, with D(z) being
linearly increasing because of an assumed constant display rate, and M (x) consisting of a succession of ramps,
with each ramp representing theretrieval of amediablock, and the horizontal stepsbetween the ramps representing

gaps between media blocks.

www.manaraa.com

16

A
M(x) e
Buffer \ S
occupancy e ’ B’(x)
Shift = 8 min /”/://’ /I\ B(X)
l Lo* X T
B max B

Location on disk (x) ——

Figure 4: Buffer occupancy chart

If the buffer occupancy were to ever become negative, then, at that instant, the display device would be
starved of the required media block, resulting in aloss of continuity. Such a discontinuity can only be averted by
aread ahead: the amount of read ahead must be such that, in its presence, the buffer can be empty at minimum,
i.e., the buffer occupancy curve must be shifted so as to touch the x-axis at its lowest point (such a shifted curve

isrepresented by dotted curvein Figure 4). Specificaly, if
Bmin = |ng|an($)|

and

Biae = ngax B(x)

then the dotted curve represents

which isnothing but B(x) shifted upwards by By, .
The exact amount of read ahead that is necessary depends on where the retrieval starts on the disk®, and can

be as much as the difference in the height between the highest and lowest points on the buffer curve (which could

3The read ahead need not be B,,,;., , except when the retrieval starts at some position to the left of the origin (assuming the media strand
stretchesto infinity on both sides of the origin), in such away that at the end of the read ahead, the disk head is positioned at location zero (at
which instant the display is also initiated).

www.manaraa.com

17

bethecase, for instance, if theretrieval wereto start just before thelocation where the curve reaches the maximum
height), givenby: B, + Bmas-

We will now present a technique to precisely compute the read ahead, given that the retrieval starts at an
arbitrary location X4+ (See Figure 5). If the buffer occupancy were to follow the curve B'(x), playback
is guaranteed to be exactly continuous (since the buffer occupancy never becomes negative), in which case,
when the disk head is retrieving the media block from location X;,,+, the buffer would contain B/ (X14r¢) =
B(Xstart) + Bmin mediablocks. Consequently, media blocks retrieved at location X4+ Would be displayed
only after the timeto display B’(Xsar¢) mediablocks, given by: 75,:4(Xstart) = B’ (Xstart) * 6, has elapsed.
During thistime, the disk head would have advanced by B'(X;:qr1) * & * p Sectors past thelocation X:4y¢, i.€,

the disk head would be positioned at:
Xinit = Xstart + B/(Xstart) * 0 * P

At theinstant X.;.-:'S mediablock isdisplayed, the disk head is positioned at X,,;;, and the buffer occupancy is
B'(Xinit). Sincethecurve B’(x) representsaretrieval/display equilibriumprocessthat exactly satisfies continuity
requirements, B’(X;,;:) is aso the smallest buffer occupancy that is needed at the time of display of X;4r4'S
media block. Thus, if the media strand were to be retrieved and displayed starting from X; 4+, B’ (X;n;:) would

become the initial read ahead necessary, and is given by:
R(Xstart) = B/(inzt) = B(Xstart + (B(Xstart) + Bmzn) * 0 * p) + Bmzn

Thetime T5,it(Xstart) = B'(Xsiart) * 6 represents the initiation latency from the time of retrieval start to the

time of display start, during which period the read ahead is performed.

5 Experience and Performance Evaluation

Atthe UCSD MultimediaL aboratory, we are devel oping aprototypemultimediaserver on a486-PC, having a
disk configuration consisting of 10 platters, each with 823 tracks. Each track isarranged in 64 sectors of 512 bytes
each, and hence, has a capacity of 32768 bytes/track. The maximum rotational latency of the disk is 16.66 ms, and
the data transfer rate is: p = 3840 sectors/second. The multimedia server provides video and audio on-demand
recording and retrieval services to several multimedia stations connected via ethernets and FDDI (see Figure 6).

Each multimedia station consists of a Sun SPARCstation, a PC-AT, a video camera, and a display monitor. The

www.manaraa.com

18

B'(x) =B(x) + B

Buffer /
occupancy | .-

min

;,
1

B(x)

’

)
i

init

(7]
2
Q
~

————ex-

I
|
]
<—
|
]
|
1
]
|
]
]
|
]
|
]
]
|
]
]
|
]
PR .

-

|

Locationondisk (x) ——
Tinit(X star} * 9)
Figure 5: Determination of read-ahead and buffering requirements

PC-ATs are equipped with digita video and audio processing hardware produced by UV C Corporation [6]. The
audio hardware digitizes audio signals at 8 KBytes/sec. The video hardware can digitize and compress motion

video at rea-time rates.

77

Ethernet/FDDI

Figure 6: Hardware configuration of our multimediaserver prototype

We have implemented the on-line and off-line merging algorithms and carried out their preliminary perfor-
mance estimation for video strands (which are the most demanding in terms of performance) whose recording

rates could be fixed at one of six levels: 32 or 16 frames/sec, 30 or 15 frames/sec, and 20 or 10 frames/sec (which

www.manaraa.com

19

are the operationa frame rates of our hardware video digiti zer). For each of these six strands, media blocks were
chosen to be the smallest possible, i.e., containing one frame each, with each frame occupying about 25 sectors
(which is about 12.8 Kbytes). The resulting gap sizes computed from Equation (1) are: 95, 103, 167, 215, 231,
and 359 sectors, respectively.

Under these constraints, when the strands are stored independently (i.e., without merging), then the average
storage efficiency isfound to be about 14%. On the contrary, both on-line and off-line merging techniquesyield a
storage efficiency of about 80%, thereby providing evidence of the significant improvementsin storage utilization
that can be expected due to merging.

For the on-line agorithm, the read-ahead and buffering requirements increase with the increase in the
fragmentation of a strands's blocks, and hence, yield highest values for the last merged strand. Thisisthe case
when the gap size at the time the last strand arrives is the minimum, requiring that the strands arrive in the order
of smallest gap size first, which is nothing but highest recording rate first (since the media block size is assumed
to be the same for al the strands). For such a scenario, Table 2 shows the large increases in merge cycle lengths
accompanying each successive merger of the video strands using the on-line algorithm, with the cycle length

reaching a maximum of 11520 sectors when the sixth and the final strand (with recording rate of 10 frames/sec)

ismerged.
Recording rates of Merge cycle length
sequences of merged strands (in sectors)
{32} 120

{32, 30} 1920

{32, 30, 20} 1920

{32, 30, 20, 16} 1920

{32, 30, 20, 16, 15} 3840

{32, 30, 20, 16, 15, 10} 11520

Table 2: Prohibitiveincrease in the merge cycle length in on-line merging

For the same above mentioned scenario, Figures 7 and 8 show the buffer utilization chartsfor the greedy and
the uniform layout policies, respectively. In these figires, buffer underflow, which causes discontinuities during
playback, are depicted by negative values of buffer occupancy. Consequently, the lowest negative values in the

charts define the initial read ahead necessary to guarantee continuity of display, and the differences between the

www.manaraa.com

20

250 -
v
S
S 200 -
)
>
2 150 -
©
o
3
o 100 4
o
3
5 504
m
0
0 2000 4000 5000 6000 7000 8000

Location on disk (sectors)

Figure 7: Buffer occupancy when the greedy layout policy isused in on-line merging

w
o
1

N
o
1

=
o
1

,J

1000 20do éo'ool 4000 b0 6000 "70}10 8000

Buffer occupancy (sectors)

Location on disk (sectors)

WO
& o© o o
L 1 1

Figure 8: Buffer occupancy when the uniform layout policy is used in on-line merging

maximum positive value and the minimum negative value define the total buffer size needed. It can be seen that,
wheresas the greedy layout policy, which packs media blocks continuoudly starting from the very first gap, requires
no read ahead but a buffer size of 200 sectors (Figure 7), the uniform layout policy, which uniformly distributes
the media blocks over all the gaps, requires aread ahead of about 10 sectors and a buffer size of only 35 sectors
(Figure 8). Clearly, the uniform layout policy yields alarge reduction in the buffering requirements as compared
to the greedy policy.

For the off-linea gorithm, assuming theavailability of two buffersfor each strand (oneto hold the block being
transferred and the other for the block being displayed), the values of k; obtained by the scaled placement policy

for each of the six strands are shown in Table 3, yielding atotal merge cycle length of 120 sectors, out of which,

www.manaraa.com

21

Videostrand | Block size M | Gap sizeG | Pattern k;'sdetermined Sequences of
recording rates (sectors) (sectors) M + G | using scaled placement deadline (1's) and
(frames/sec) (sectors) non-deadline (0's)
merge cycles
32 25 95 120 1 {1,1,1,...}
30 25 103 128 0.9375 {1,0,1,1,...,10,...}
20 25 167 192 0.625 {1,0,0,1,1,0,1,1,...}
16 25 215 240 0.5 {1,0,0,1,0,1,0,1, ...}
15 25 231 256 0.46875 {0,0,1,0,1,0,1,...}
10 25 359 384 0.3125 {0,0,0,1,0,0,1,...}

Table 3: Off-line merging using the scaled placement policy

23 sectors are unoccupied, resulting in a storage efficiency of 80 %, which issame asthat of the on-lineal gorithm.
Transforming the same k; into integral vaues results in the sequences of deadline merge cycles shownin the last
column of Table 3 (“1” in the sequence represents a deadline merge cycle, and “0” represents a non-deadline
merge cycle). Sincethetotal number of buffersrequired isjust two for each strand, the off-linealgorithmyields a
reduction in the buffering requirements. Furthermore, display can beinitiated as soon asamediablock isretrieved

from the disk, thereby eliminating the need for any read-ahead.

6 Concluding Remarks

We have addressed the problem of collocationa storage of multiplemediastrandson disk. We have presented
amodel that rel atesdi sk and devicecharacteristicsto theplayback rate of mediastrands, and derivesstoragepatterns
that can guarantee their continuous retrieval. To efficiently utilize the disk space, we have devel oped techniques
for merging storage patterns of multiple media strands. We have proposed both an on-line algorithm suitable
for merging a new media strand into a set of aready stored strands, and an off-line merging algorithm that can
be applied a priori to the storage of a set of media strands before any of them have been stored on disk. The
on-lineal gorithm uses uniformlayout techni questo minimize read-ahead and buffering requirements. The off-line
algorithm can operate with much smaller buffer sizes, and it does so by using a staggered toggling technique in
which sizes of successive mediablocksare fine tuned individually so asto together not exceed the avail able buffer
size (without, of course, violating the playback rate requirements of any of the strands). These algorithms are

being implemented in the multimediastorage server being devel oped at the UCSD MultimediaLaboratory. Initia

www.manaraa.com

22

performance estimations demonstrate significant gainsin storage space utilization as aresult of using both on-line
and off-linemerging a gorithms. We are extending the techniques to handle variable block sizes and finite strands,

aswell.

References

[1] C. Abbott. Efficient Editing of Digital Sound on Disk. Journal of Audio Engineering, 32(6):394-402, June
1984.

[2] P B.Bera C.Y.R. Chen, A. Ghafoor, C. C. Lin, T. D. C. Little, and D. Shin. An Architecturefor Distributed
Multimedia Database Systems. Computer Communications, 8(3):413-427, April 1990.

[3] E.A.Fox. TheComing Revolutionin InteractiveDigital Video. Communicationsof the ACM, 7(32):794-801,
July 1989.

[4] J. Gemmell and S. Christodoulakis. Principles of Delay Sensitive Multimedia Data Storage and Retrieval.
ACM Transactions on Information Systems, 10(1):51-90, 1992.

[5] S. Gibbs, D. Tsichritzis, A. Fitas, D. Konstantas, and Y. Yeorgaroudakis. Muse: A Multi-Media Filing
System. |EEE Software, 4(2):4-15, March 1987.

[6] M. Leonard. Compression Chip Handles Real-Time Video and Audio. Electronic Design, 38(23):43-48,
December 1990.

[7] Y.Mori. MultimediaRea - TimeFile System. Technical report, MatshushitaElectric Industrial Co., February
1990.

[8] B.C.Ooai, A.D. Narasimhalu, K.Y. Wang, and |.F. Chang. Design of aMulti-MediaFile Server using Optical
Disks for Office Applications. IEEE Computer Society Office Automation Symposium, Gaithersburg, MD,
pages 157-163, April 1987.

[9] P Venkat Rangan and D. C. Swinehart. Software Architecture for Integration of Video Services in the
Etherphone Environment. |EEE Journal on Selected Areas in Communication, 9(9):1395-1404, December
1991.

[10] P.Venkat Rangan and Harrick M. Vin. Designing File Systemsfor Digital Video and Audio. In Proceedings
of the 13th Symposium on Operating Systems Principles (SOSP’ 91), Operating Systems Review, \Vol. 25, No.
5, pages 81-94, October 1991.

[11] P Venkat Rangan, Harrick M. Vin, and Srinivas Ramanathan. Designing an On-Demand MultimediaService.
|EEE Communications Magazine, 30(7):56-65, July 1992.

[12] W.D. Sincoskie. System Architecturefor aLarge Scale Video on Demand Service. Computer Networks and
ISDN Systems, North-Holland, 22:155-162, 1991.

[13] C.Yu, W. Sun, D.Bitton, Q. Yang, R. Bruno, and J. Yus. Efficient Placement of Audio Data on Optical Disks
for Real-Time Applications. Communicationsof the ACM, 7(32):862-871, July 1989.

www.manaraa.com

